Mechanical and vibrational characterization of amyloid-like HET-s nanosheets based on the skewed plate theory.
نویسندگان
چکیده
Pathological amyloidogenic prion proteins have a toxic effect on functional cells in the human cerebrum because of poor degradability and the tendency to accumulate in an uncontrolled manner under physiological conditions. HET-s, a fungal prion protein, is known to undergo conformational variations from fibrillar to nanosheet structures during a change from low to high pH conditions. It has been said that this conformational change can lead to self-propagation by nucleating on the lateral surface of singlet fibrils. Efforts have been made toward the mechanical characterization of fibrillar amyloids, but a global understanding of amyloid-like HET-s nanosheet structures is lacking. In this study, we analyzed the mechanical and vibrational characteristics of the skewed HET-s nanosheet structures that developed under neutral pH conditions by performing various molecular dynamics simulations. By applying the skewed plate theory to HET-s nanosheets for various length scales with numerous pores inside the structures, we found that the skewed HET-s nanosheet structure has mechanical properties comparable to those of previously reported biological film materials and nanomaterials. Considering the inherent characteristics of structural stability, our observation provides valuable and detailed structural information on skewed amyloid-like HET-s nanosheets.
منابع مشابه
Buckling analysis of graphene nanosheets based on nonlocal elasticity theory
This paper proposed analytical solutions for the buckling analysis of rectangular single-layered graphene sheets under in-plane loading on all edges simply is supported. The characteristic equations of the graphene sheets are derived and the analysis formula is based on the nonlocal Mindlin plate. This theory is considering both the small length scale effects and transverse shear deformation ef...
متن کاملA density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride
Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...
متن کاملBuckling analysis of graphene nanosheets based on nonlocal elasticity theory
This paper proposed analytical solutions for the buckling analysis of rectangular single-layered graphene sheets under in-plane loading on all edges simply is supported. The characteristic equations of the graphene sheets are derived and the analysis formula is based on the nonlocal Mindlin plate. This theory is considering both the small length scale effects and transverse shear deformation ef...
متن کاملA density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride
Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...
متن کاملVibration Analysis of Circular Magneto-Electro-Elastic Nano-plates Based on Eringen s Nonlocal Theory
The present work mainly studies the free vibration of circular magneto-electro-elastic (MEE) nano-plates based on the Kirchhoff’s plate theory within the framework of nonlocal elasticity theory to account for the small scale effect. The MEE nano-plate studied here is considered to be fully clamped and subjected to the external magnetic and electric potentials. Using nonlocal constitutive relati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 19 18 شماره
صفحات -
تاریخ انتشار 2017